Bull Trout Exhibit Growth Benefits and Life History Responses After Elwha River Dam Removal

Samuel J. Brenkman¹, Roger J. Peters², Roger A. Tabor², Joshua J. Geffre¹, Kathryn T. Sutton²

¹National Park Service, ²U.S. Fish & Wildlife Service

Presenter: Kathryn T. Sutton

>91,000 Dams in the U.S. = Intensive Demand on Waterways

http://nid.usace.army.mil

Dams Blocked Access to 80 miles of Rivers & Creeks

Elwha Dam • rkm 7.9

- Constructed 1913
- 120 ft. high
- Removed 2012

Glines Canyon Dam • rkm 21.4

- Constructed 1927
- 235 ft. high
- Removed 2014

Elwha River Restoration: The Nation's Largest Dam Decommissioning

Before Dam Removal: Relative Abundance & Spatial Extent

Brenkman et al. (2012)

What is the response of bull trout to the nation's largest dam removal?

- Determine spatial and temporal movements throughout watershed, and upper extent after dam removal
- Assess body size before and after dam removal
- Describe diets of Elwha River bull trout after dam removal

Radio Telemetry: Methods and Approach

- Weekly capture via drift gill-net, 2014 2017
- Internally tagged bull trout
- Used transmitters that emitted coded bursts enabling unique identification
 of several hundred transmitters per frequency
- Tracked via strategically located fixed stations & weekly walking & monthly aerial surveys

ELWHA FISH CAPTURES 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
Year	N tagged	Tagging Location (rkm)	Tagging Period
2014	24	2-12	Apr 30- Jul 23
2015	46	1-21	Apr 15- Oct 28
2016	40	1-21	Mar30- Aug 23
2017	31	1-23	Apr 26- Sep7

Progressive annual spatial expansion

Length at age, pre- and post-dam removal

- Pre-dam removal
 - Angling
 - 2005, 2006, 2011
 - ME and UE
- Post-dam removal
 - Drift gill-netting
 - 2014-2017
 - LE and ME
- Aging from scales

Body Size, pre- and post-dam removal

Diet Analysis

- Beach seining in Elwha estuary after dam removal (n = 37)
- Opportunistic sampling in river after dam removal (n = 143)
- Stomach contents ID'ed and separated into prey groups in the lab

Diet Analysis

- Diet primarily comprised of prey fish
 - (34% of all prey by number, >95% of stomach contents by weight in 71% of bull trout)
 - Pacific salmonids primary type consumed (87% of prey fish)
- Binge feeding observed
 - Hatchery releases of juvenile Chinook or coho salmon
- Limited occurrence of fish eggs and carcasses

Restoration Trajectory of Elwha Bull Trout

Pre-dam Removal

Low abundance and densities

Isolated in fragmented river system

Genetically isolated headwaters population

Adfluvial (w/ reservoirs) and fluvial (headwaters)

Smaller body size

Restoration Trajectory of Elwha Bull Trout

Pre-dam Removal	Expectations Post-dam Removal	
Low abundance and densities	Increased abundance and densities	
Isolated in fragmented river system	Spatial expansion throughout the river	
Genetically isolated headwaters population	Greater genetic exchange	
Adfluvial (w/ reservoirs) and fluvial (headwaters)	Increased anadromy	
Smaller body size	Increased length at age	

Conclusions

- Unique opportunity to assess response of bull trout to dam removal
- Connection of headwaters to the estuary
- Using resources now that were not available prior to dam removal
- Potential for increased size and fecundity, anadromy, abundance, and life history diversity
- Restoring connectivity may be key to recovery

Acknowledgements

NPS, OLYM Kathy Beirne Pat Crain Anna Geffre Roger Hoffman Heidi Hugunin Phil Kennedy James Starr Brian Winter

Keith Denton & Assoc. Keith Denton

Photos: NPS Rebecca Paradis John Chao

NOAA

George Pess Todd Bennett Steve Corbett Kinsey Frick Martin Liermanr

Lower Elwha Klallam Tribe

Matt Beirne Mel Elofson Mike McHenry Ray Moses Rebecca Paradis Sonny Samson Wilson Wells USFWS Jeff Chan Pat DeHaan Dan Lantz Tracy Leavy Sedge Neil Michaela Lowe Jeffery Johnson Michael Elam

USGS

Jeff Duda Christian Torgersen Ethan Welty Trevor Eakes

W UNIVERSITY of WASHINGTON