Do Fin Rays Offer a Non-Lethal Approach for

Assessing Life History Patterns Using Geochemical

Analysis?

R. Peters¹, H. Gearns¹, J. Johnson¹, L. Campbell², M. Lowe³, K. Larsen⁴, L. Wetzel⁴, L. Low⁵

¹USFWS, Lacey, WA; ²WDFW, Olympia, WA; ³UW, ⁴USGS, Seattle, WA; ⁵AmeriCorps

Outline

- Background & problem
- Alternative structures
 - Scales
 - Fin rays
- Impacts of fin ray removal
 - Lab
 - Field
- Fin ray & otolith relationships
- On-going efforts & next steps
- Summary

Background & Problem

- Use of geochemical analysis
 - Connect nursery and rearing habitat in pelagic species
 - Assess spatial migration and life history patterns of marine and anadromous fish
 - ID natal origin
 - ID critical habitat
 - Etc.
- Problem
 - Otoliths extraction is lethal

Campbell, WDFW, unpublished data

Assessing Alternative Structures

- Approach
 - Bull trout with known otolith geochemistry (Brenkman et al. 2007)
 - Assess non-lethally sampled structures
 - Scales
 - Fin rays
 - Assess elemental ratios

Pectoral fin ray 2 (anterior view) Section for hemical analysis

Photos: Lance Campbell, WDFW

Pectoral fin & rays anterior insertion

Assessing Alternative Structures

- Scales
 - Useful for anadromy
 - Do not show timing of migrations

Assessing Alternative Structures

- 2nd pectoral fin ray
 - Useful for anadromy
 - Shows migration timing

В

С

А

Sections for chemical analysis Campbell, WDFW, unpublished data

Pectoral fin ray (2).

Survival Assessment

 Can we remove the desired structure without impacting the fish?

Section 5 Section 6 Section 7 Section 8

Removal assessment: Lab

- No mortality
- No statistical difference \bullet
 - Length or weight
 - **Beginning or end** ullet
 - Growth
 - Length or weight •

-0.3

control

Treatment

 \diamond

treat

Removal assessment: Healing

~85% of the wounds
 classified as covered scare
 after 10 weeks

Removal assessment: Healing Methods

- Remove fin rays at Buckley
 Diversion all fish PIT tagged
- Compare survival, migration rate, and growth
 - 'Recaptures' at upstream PIT arrays and Buckley Diversion
- Paired study design
 - Equal number of control and treatment fish each day

Removal assessment: Field

- Sampled 2017, 2018
- 2017
 - 16 paired fish
 - 6 days, June 9 July 3
 - 1-4 pairs/day
- 2018
 - 30 paired fish
 - 14 days, June 4 July 25
 - 1-6 pairs/day

Removal assessment:

Field

- Recoveries similar
 - 1st upstream
 - Return to Buckley
 - 2nd upstream
 - Total unique
- Migration rate similar
- Growth similar
 - Low samples size (n=3)

Otolith, Fin Ray Relationship

- Purpose
 - Assess relationships between otoliths, pectoral, and anal fin rays
 - Continue testing assumptions
 - Size
 - Relationship between otoliths and fin rays
 - ID the best structure
 - Assess element concentration through time
 - Assess presence of maternal mark

Otolith, Fin Ray Relationship

- Method
 - Hatchery rainbow trout age 0-3+
 - Apply a strontium chloride mark
 - Bull trout morts (n=4) no SrCl mark
 - Compare otolith and fin ray sizes
 - Compare mark location and concentration
 - Assess maternal mark
 - Progeny of FW captive brood & traditional hatchery steelhead

Photo: Lisa Wetzel, USGS

Otolith, Fin Ray Relationship

- Size
 - Otolith > Rays
 - Pectoral = Anal fin rays
- Structures correlated with fork length (age)
 - Bull trout structures < rainbow trout
- Fin ray diameter correlated with otolith length

Kim Larsen, Lisa Wetzel, USGS, unpublished data

On-Going Efforts & Next Steps

- Different species cottids (Lowe, UW)
- Potential use of isotopes
 (Lowe, UW)
- Determine migratory patterns of bull trout in the Puyallup basin (Lowe, UW)

On-Going Efforts & Next Steps

- Age bull trout (Larsen & Wetzel, USGS)
- Test basic assumption
 - Concentrations stable over time
 - Represent environment
 - ID influential factors
 - Etc.

Summary

- Alternative structures
 - Scales no temporal resolution
 - Fin rays similar to otoliths
- Removal assessment
 - Survival, growth, migration rate not impacted
- Otolith fin ray relationship
 - Size related, rays smaller
 - Bull trout < rainbow</p>
- Fin rays useful across species (n=2)
- Several assumptions still need testing

Questions