An Ecological Approach for Optimizing Hatchery Release Timing of Salmon

Eric Lauver - Lead Biologist Todd Pearsons, Ph.D. - Senior Fisheries Scientist

WA-BC Chapter Annual Meeting Bremerton, WA April 11, 2019

Introduction

https://www.drweil.com/diet-nutrition/food-safety/worms-in-salmon/___

s://www.nwcouncil.org/news/ocean-predators

Strong focus, effort, and expense

Least focus, effort, and expense

Release Timing

- Least sophisticated activity
- ✓ Often based on operational convenience
- Self-imposed constraints
- Could releases be conducted better?
 Unaware of a model that recommends when to release fish

Common Release-timing Factors

✓ tradition ✓ hatchery staff availability ✓ equipment availability ✓ hydro system spill ✓ poor fish health ✓ tagging schedules ✓ studies ✓ monitoring ✓ hatchery space limitations

Influence of Release Timing

Release timing differences, even as small as 12 hours, can have a dramatic influence on important biological metrics such as survival and ecological interactions

Differences in release timing may be among the largest performance benefit/cost in decisions about fish culture

Focus of This Talk – forced releases

Suggested Defaults

- Night releases
- Ascending hydrograph
- Pulsed

- Adjust staffing levels to support <u>fish</u> needs
 - borrow staff
 - reprioritize other work
 - work overtime

Influences of Release Timing

What's best for the fish, and therefore the program?

Fish Readiness

Environmental Conditions Ecological Interactions

spring

1. Fish Readiness

- Attempt to release fish when fish are most ready to survive and migrate in the stream
- Behavior (migratory behavior)
- Coloration (body, fin coloration)
- Size (target/optimal size)
- Health

http://www.fishsciences.net/projects/stanislaus/caswell%20outmigration/caspost4/stanpostcard4.htm

Fish = $w_1(\% \text{ behavior})$ $w_2(\% \text{ coloration})$ $+ w_3(\% \text{ size})$

2. Ecological Interactions

- Attempt to release fish to minimize undesirable interactions with other taxa
 - Predators
 - NTTOC

One alternative is to minimize risk using PCD-risk 2 model

Interaction = $w_1(100\% - \%predation)$ $w_2(100\% - \%NTTOC1 impact)$ $+ w_3(100\% - \%NTTOC2 impact)$

3. Environmental Conditions (discharge, clarity, temperature)

- 1. Attempt to release fish during the best conditions within a year (e.g., just prior to a cold peak-flow event)
- 2. Make predictions of discharge, clarity, and temperature based upon snow pack, forecasted air temperature, forecasted precipitation, water-release schedules from dams

Environment = $w_1(\%$ max discharge trib) $w_2(\%$ max discharge main) $w_3(\%$ min temp trib) $+ w_4(\%$ min temp main)

Conceptual Model $w_1(\% \text{ Fish})$ $w_2(\% \text{ Environment})$ $+ w_3(\% \text{ Interaction})$

Examples 0.3(80%) + 0.2(90%) + 0.2(70%) = .56 0.2(75%) + 0.2(60%) + 0.3(50%) = .42 0.3(40%) + 0.3(80%) + 0.3(90%) = .630.1(90%) + 0.1(85%) + 0.2(65%) = .18

WENATCHEE - AT PESHASTIN (PESW1)

 Scheduled release: April 16 & 17

 Optimized release:
 April 18 & 19

Forecast Created: 04/10/2019 13:33 PDT Plot Created: 04/10/2019 16:59 PDT

WENATCHEE RIVER AT PESHASTIN

Universal Time (UTC)

Survival to McNary: Volitional by Hour (2015)

Work in Progress

Model is not parameterized (spCh, suCh, fCh)

Two years of alternative releases done, three more replicates

Monitoring survival for Nason Creek (spCh), Carlton (suCh)

✓ More retroactive analyses

Conclusion

Fish Readiness

Environmental Conditions Ecological Interactions

Acknowledgments

Todd Pearsons, Ph.D. Senior Fisheries Scientist Grant County Public Utility District

Peter Graf Fisheries Scientist Grant County Public Utility District

Grant County
PUBLIC UTILITY DISTRIC

