Reconstructing a century of coastal productivity and predator trophic position in WA with archival bone

AFS WA/BC Annual Meeting

Megan Feddern Gordon Holtgrieve, Eric Ward

Competing Interests

- Recovering predator populations that increase competition with humans for the same prey
- New tradeoffs that emerge when protected predators consume protected prey, and
- Multiple predator populations that compete for the same limited prey.

Single Species Management

Multi Species Management

- Identify variability in harbor seal trophic position: spatio-temporal (sex and size)
- Identify historic (1928-2013) relationships between harbor seal trophic position and the ecosystem
- Reconstruct historic environmental isotope
 baseline δ¹⁵N and its relation to productivity

Objectives

- Identify spatio-temporal, sex, and size variability in harbor seal trophic position
 - Trophic position will vary through time
- Identify historic (1928-2013) relationships between harbor seal trophic position and the ecosystem
 - Trophic position will change through time and reflect in response to prey availability and environmental condition
- Reconstruct historic environmental isotope baseline δ¹⁵Ν
 - δ¹⁵N will change through time in response to human population and environmental productivity

- Compound specific stable isotope analysis of amino acids (n = 145)
 - Skulls from Burke and Slater Museums in WA
 - National Marine Mammal Laboratory
 - Smithsonian Institute in DC
 - Royal Museum in BC
- Bulk Stable Isotope

C & N

Germain et al. 2013

Comparative Datasets

PREY SOURCES

- WA Chinook Salmon Escapement
 - WA Rivers, Fraser River, 1980-2014
 - Summarized by Chasco et al. 2017
- Hatchery Chinook Releases
 - WA, 1971-2015
 - Summarized by Chasco et al. 2017
- Eulachon
 - Total Landings
 - 2010 WDFW Report
- Hake
 - WDFW, 2017 Status Report
 - Total Biomass 1966-2017
- Herring
 - WDFW, 2012 Stock Assessment Report
 - Spawning Biomass by Stock
- Harbor Seal Population
 - WDFW, 1999
 - 1978-1999

ENVIRONMENTAL

- PDO
 - JSIAO
 - **1**900-2017
- Upwelling
 - Stiletz Bay, La Push
 - Pacific Fisheries Environmental Laboratory
 - Components of Ekman transport, Coast Angle
 - 1967-2018, Annual average of monthly index
- Human Population (King County)
 - WA State Office of Financial Management Forecasting Division
 - 1960-2010

ANALYSIS

- Generalized Additive Model
- Dynamic Factor Analysis
 - Gaussian Process Model

Reconstructing historic harbor seal trophic position

Reconstruct historic environmental isotope baseline δ¹⁵N

Objectives

- Identify spatio-temporal, sex, and size variability in harbor seal trophic position
 - Trophic position varies based on location and time
- Identify historic (1928-2013) relationships between harbor seal trophic position and the ecosystem
 - Trophic position will change through time and reflect in response to prey availability and environmental condition
- Reconstruct historic environmental isotope baseline δ¹⁵N
 - δ¹⁵N phenylalanine will change through time in response to human population and environmental productivity

Conclusions: Management

- Harbor seal trophic position is driven by productivity
- Harbor seals feed lower in the food web with increased upwelling
- Trophic position varies spatially and temporally

Conclusions: Methodological

- Museum specimens are useful data source for retrospective analyses
- Collagen amino acids can provide estimates of historic primary productivity

Acknowledgments

Smithsonian Institution

Reconstruct historic harbor seal $\delta^{13}C$

Standard Length

Underlying trends with ecological variables: δ¹⁵N

Underlying trends with ecological variables: Trophic Position

Pinniped Recovery in Washington

Abundance or Biomass

Gaussian Dynamic Factor Analysis

Model	LOOIC	SE
TP, 2 locations, 1 Trend	679.1	36.2
TP, 2 locations, 2 Trends	651.3	40.2
TP, 2 locations, 3 Trends	648.9	41.1
TP, 1 location,1 Trend	677.5	34.8
TP., 2 Trend	647.8	38.0
TP., 3 Trend	642.8	39.0
TP., 1 Trend, Env	681.1	32.5
δ ¹⁵ N _{Phe} , 2 locations, 1 Trend	537.8	31.1
δ ¹⁵ N _{Phe} , 2 locations, 2 Trends	537.2	32.0
δ ¹⁵ N _{Phe} , 2 locations, 3 Trends	537.6	32.5
δ ¹⁵ N _{Phe} , 1 location, 1 Trend	539.8	31.7
δ¹5N _{Phe} , 1 location, 2 Trends	539-3	32.6
δ ¹⁵ N _{Phe} , 1 location, 3 Trends	536.4	33.2

