Lessons From Large-Scale Experiments Testing the Effectiveness of Stream Restoration: Are we there yet?!

Stephen Bennett^{1,2}, Nick Bouwes^{1,2}, Nick Weber², Joe Wheaton^{1,3}, and Scott Shahverdian^{1,3}
¹Utah State University, ² Eco Logical Research Inc., and ³Anabranch Solutions, LLC.

Acknowledgements

Funding

- NOAA, Pacific Coastal Salmon Recovery Fund
- NOAA, Pacific States Marine Fisheries Commission
- Salmon Recovery Funding Board
- Oregon Watershed Enhancement Board
- Bonneville Power Administration

- Snake River Salmon Recovery Board
- Integrated Status and Effectiveness Monitoring Program
- US Forest Service
- Washington Department of Fish and Wildlife
- Oregon Department of Fish and Wildlife
- Utah State University

Outline/Message

Intensively Monitored Watershed

- What and Why
- Lessons

Bridge Creek IMW

- Beavers
- Incision

Asotin Creek IMW

- Large woody debris
- Channelization

Setting Restoration Today ... Effective?

- Hard engineering
- Process-based?
- High cost/km
- Small extent

Intensively Monitored Watersheds (IMWs)

Bridge Creek IMW

Beaver dam analogs (BDAs)

Problem Incision

Incised Channel

10³ years

Incision Recovery

- Simplified habitat
- Limited riparian

- Complex & dynamic channel
- Healthy riparian

Restoration Approach Beaver Dam Analog Structures (BDAs)

Monitoring Fish

- Abundance
- Age
- Growth
- Movement
- Survival
- Carrying Capacity
- Smolts/Spawner

Mark-recapture (summer, fall)

Mobile PIT tag detection (all seasons)

PIT tag arrays (continuous)

Fish In-Fish Out (Brood year)

Monitoring Habitat

Columbia
Habitat
Monitoring
Protocol
(CHaMP)

Topographic survey of channel

Digital Elevation Model (DEM)

Invertebrate Drift

Stream
Temperature
& Discharge

Champmonitoirng.org

BDA treatment & Beaver Response

Restoration Response (treatment scale) Compressed Sumer Temperature Range

Weber et al. 2017 PLoS ONE

Restoration Response (site scale) Temperature refugia

Comparison of treatment minus control for juvenile steelhead abundance, growth, survival and **Production**: 2006-2015. Error bars = 90% CI.

Bouwes et al. 2016. Scientific Reports

Asotin Creek IMW, Washington High Density Large Woody Debris (HDLWD)

Location of Asotin Creek Intensively Monitored Watershed in southeast Washington. Three colored tributaries comprise the IMW study area: Charley Creek (Green), North Fork (Orange), South Fork (Yellow).

Setting Landscape

	Basin	Bankfull		Average	Peak
	Area	width	Gradient	Discharge	Discharge
Stream	(km²)	(m)	(%)	(cfs)	(cfs)
Charley	58	4.8	3.0	9.5	100
North Fork	165	9.8	1.7	60.0	1000
South Fork	104	6.3	2.6	11.5	800

Young forest, minimal wood input & efficient transport

Restoration Approach High Density Large Woody Debris (HDLWD)

- Soft-engineering
- Let water do the work¹
- Large extent
- High density (5/100m)
- Lower cost/km (~25%)

Restoration Approach Build a tree

Post Assisted Log Structures (PALS)

Experimental Design Staircase

Restoration Response Habitat

Geomorphic Units Pre Restoration

Geomorphic Units Post Restoration

Restoration Response Fish

Change in abundance of juvenile steelhead in treatment sites relative to control sections within each study creek within the Asotin Creek IMW: 2008-2017. Error bars = 90% confidence intervals.

Restoration Response Habitat

Smolts/female (colored bars) by stream and brood year, and total female escapement (black line): 2010-2015.

Take Home Messages

- Scale treatment to problem
- Cost-Benefit a MUST
- Effectiveness still unclear (monitor!)
- Climate Change is HERE
 - FlowTemperature

Cheap and Cheerful

BDA Complex

Bridge Creek IMW

- Testing BDA Assisted Incision Recovery
- Benefits to Fish Populations and Habitat

B = BACI, S = Staircase design. Number represents number of sections treated in BACI design and number of streams treated in Staircase design.

Background Wadeable Streams

Charley Creek ~ 4-5 m bankfull: stream order 2

Low summer flows: 5-25 cfs Large floods: 5000-6000 cfs

South Fork Asotin Creek ~ 6-7 m bankfull: stream order 3

North Fork Asotin Creek ~ 9-10 m bankfull: stream order 4

Response Net Rate of Energy Intake (Reach Carrying Capacity)

Decreased LWD

Upland Encroachment

Overbank Flow

Disconnected Floodplain

Soft Engineering Structure Construction

- No engineering specs
- 10-20/day
- 2-6 structures/100 m
- Use local materials
- 5-10 km long treatments

More information and GIS tools

BRAT:
Beaver
Restoration
Assessment
Tool

WRAT:
Wood
Recruitment
Assessment
Tool

RCAT:
Riparian
Condition
Assessment
Tool

https://joewheaton.org
https://cheapcheerful.weebly.com
https://eco-logical-research.com