Hierarchical Bayesian meta-analysis to characterize cross-population variation in the stock-recruit relationship for bull trout (*Salvelinus confluentus*)

> Rachel Chudnow, Brett van Poorten, and Murdoch McAllister AFS Kelowna, 2018

Bull trout: Conservation status and recovery

Lower Kananaskis Lake, Alberta Data courtesy of Dr. John Post and Dr. Fiona Johnston

What is density dependent compensation (DD?)

What is density dependent compensation (DD?)

Importance of density dependent (DD) compensation

- Critical for population persistence
- Permits harvest and population survival despite stochastic perturbations
- Critical for estimating recovery rates and sustainable harvest

Importance of density dependent (DD) compensation

- Critical for population persistence
- Permits harvest and population survival despite stochastic perturbations
- Critical for estimating recovery rates and sustainable harvest

• Has not been quantitatively explored for bull trout across species range

Getting at DD compensation with Stock-recruitment models

Ricker

Beverton-Holt

Exploring compensation with the SR the Goodyear compensation ratio

- What is the CR?
 - Measures change in survival and fecundity parameters
 - Provides index of degree of compensation required for a fished population to persist

Exploring compensation with the SR the Goodyear compensation ratio

What is the CR?

- Measures change in survival and fecundity parameters
- Provides index of degree of compensation required for a fished population to persist

- Why is it important?
 - Takes from SR function α to a parameter useful for:
 - Determining rates of recovery
 - Carrying out population viability analyses
 - Developing robust management
 - Exploring potential harvest opportunities

Difficulties in determining SR

- Key uncertainties result from:
 - Limited temporal and spatial scale of data
 - High variance in estimates of stock size and/or juvenile density
 - Spatial heterogeneity of populations
 - Difficulty explicitly defining stock and recruit

Hierarchical Bayesian meta-analysis

- Statistical model composed of multiple levels
- Combines data from several independent sources
- Estimates parameter values simultaneously for individual populations and meta-population(s)
- Gaining traction in SR analysis for data-limited situations and where data is uninformative

- Combines data from several independent sources
- Explicitly accounts for uncertainty
- Estimates parameters at population and meta-population level

- Combines data from several independent sources
- Explicitly accounts for uncertainty
- Estimates parameters at population and meta-population level
 - Can explore variability in key parameters between and across populations

- Combines data from several independent sources
- Explicitly accounts for uncertainty
- Estimates parameters at population and meta-population level
 - Can explore variability in key parameters between and across populations
 - Provides smaller variance and more reliable parameter estimates

- Combines data from several independent sources
- Explicitly accounts for uncertainty
- Estimates parameters at population and meta-population level
 - Can explore variability in key parameters between and across populations
 - Provides smaller variance and more reliable parameter estimates
 - Predicts parameter probability distributions for unsampled populations

Data collection

- Compiled for fluvial and adfluvial bull trout across species range
- Data obtained for 33 populations
- 21 excluded due to:
 - Short time series (<5 years)
 - Incomplete information
 - Substantial changes in productivity or carrying capacity

Description of bull trout stock-recruit datasets utilized in analysis.

System	Province	Life history	Data range (yrs.)	Data series length (yrs.)	Publication type
Eunice Creek	AB	Fluvial	1971-1983	10	Journal *
Smith-Dorrien Creek	AB	Adfluvial	1995-2001	7	Journal †
Attichika Creek	BC	Adfluvial	2001-2007	7	Research Document ‡
South Pass	BC	Adfluvial	2001-2007	7	Research Document‡
Tributary 4 (Mainstem)	BC	Adfluvial	2001-2007	7	Research Document‡
Tributary 4 (Upper South Fork)	BC	Adfluvial	2002-2007	12	Research Document‡
Tributary 4 (Lower South Fork)	BC	Adfluvial	2003-2009	8	Research Document‡
Tributary 12	BC	Adfluvial	2001-2007	7	Research Document‡
Tributary 16	BC	Adfluvial	2001-2007	7	Research Document‡
Line Creek	BC	Fluvial	1991-1999	9	Personal communication §
Kaslo River	BC	Adfluvial	2010-2014	5	Personal communication
Keen Creek	BC	Adfluvial	2010-2014	5	Personal communication

* Paul *et al.*, 2000

† Johnston et al., 2007

‡ David Bustard and Associates LTD.

§ Jim Allen, Pisces Environmental Consulting 2016

|| Greg Andrusak, BC FLNRO

Results: Fits to stock-recruit data under the assumption of Ricker SR function

Spawner index

Take home messages

- Provides **prior** for unsampled populations
- CR estimate useful for:
 - Determining rates of recovery
 - Developing management
 - Exploration of potential harvest opportunities

Recruitment compensation ratio (CR)

Take home messages

• Bull trout have **large** scope for improvements in juvenile survival at low stock size

• Suggests bottleneck for population recovery likely habitat quality and quantity

Take home messages

- If this is important (which it is) people need to collect the data
 - Datasets uninformative
 - Lack of available stock-recruitment data
 - Lack of consistency in data collection approaches between regions

Thank you

• <u>Collaborators:</u>

- Dr. Villy Christensen (UBC)
- Dr. Rick Taylor (UBC)
- Dr. Josh Korman (UBC, Ecometric Research Inc.)
- Ministry of Forests, Lands and Natural Resource Operations Fish and Wildlife Branch – Omenica Region
- Mr. John Hagen (John Hagen and Associates)

Funding

• Habitat Conservation Trust Foundation (HCTF)

Photos:

- Map of approximate current and historic global distribution of *Salvelinus confluentus*. Modified from COSEWIC. 2012. Assessment and Status Report on the Bull Trout *Salvelinus confluentus* in Canada.
- Juvenile bull trout. U.S. Fish and Wildlife Service.
- Bull trout. Photo by Joel Sartore, U.S. Fish and Wildlife Service.
- Parent, E. and Rivot, E. 2013. Introduction to hierarchical Bayesian modeling for ecological data. CRC Press. FL, USA.

