Theory & Practice Of Risk Communication

Gottfried Pestal (SOLV Consulting Ltd.)

BC-WA Chapter of AFS
Kelowna, 21 March 2018
Outline

• Introduce 2 conceptual maps
 • Types of risk assessment
 • Types of presentation

• Go through 2 examples and link them back to the concepts maps
 • Loss of hatchery brood in a conservation program
 • Fraser Sockeye harvest rule simulations
Concept Map 1: Types of Risk Assessment
Components of Risk: 4 Big Questions

- **How Likely?** (Probability)
- **How Bad?** (Severity)

What’s the Risk? (Expected Loss)

How sure are we?

(Uncertainty in estimates of probability and severity)
<table>
<thead>
<tr>
<th>Assessment Approach</th>
<th>Components of risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quant</td>
<td>Probability only</td>
</tr>
<tr>
<td>Qual</td>
<td>Probability and Severity</td>
</tr>
</tbody>
</table>
In Theory: Quantify all the components

Components of risk

Assessment Approach

<table>
<thead>
<tr>
<th></th>
<th>Probability only</th>
<th>Probability and Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Qual</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In Practice – Published Research

Components of risk

<table>
<thead>
<tr>
<th>Assessment Approach</th>
<th>Probability only</th>
<th>Probability and Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quant</td>
<td>68%</td>
<td>20%</td>
</tr>
<tr>
<td>Qual</td>
<td></td>
<td>12%</td>
</tr>
</tbody>
</table>

7
Components of risk

- **Assessment Approach**
 - Quant
 - Qual

- **Probability only**
 - Probability and Severity

- Most are probably in this box
Concept Map 2: Types of Presentation
Types of Presentations

Lecture
Convey a body of knowledge

Sales Pitch
Trigger a course of action in the audience

Decision Support
Neutral packaging of information
Types of Presentations

Lecture
Audience obligation to grasp material

Sales Pitch
Filter content based on anticipated audience reaction

Decision Support
Introduce decision - support tools, point out key results and major sources of uncertainty
Types of Presentations

Lecture
1 day seminar on restoration techniques for salmon habitat

Sales Pitch
5 min pitch to solicit funding for a specific salmon habitat restoration project

Decision Support
30 min intro to an interactive tool for prioritizing habitat restoration projects in a watershed
Example 1: Loss of Hatchery Brood in a Conservation Program
Background

• Community-operated hatchery program as key part of a recovery effort, coordinated by a multi-stakeholder round table

• Power failure in February resulted in total loss of hatchery juveniles

• Short time window to decide whether to trap wild fry and either:
 • Rear and release larger juveniles
 • Rear as a captive brood until adult stage

⇒ Tech team wanted to communicate the pro/con for each option.

⇒ Only project in 15yrs that neatly fit the textbook decision tree (3 options, 4 outcomes each)
Where Does It Fit?

Components of risk

Probability only
Probability and Severity

Assessment Approach

Qual
Quant

Lecture
Sales Pitch
Decision Support
Example 3: Decision Tree

Loss of hatchery brood in a conservation program

(February 2005)

No intervention

• No financial costs
• Some risk if survival is poor
• Significant harvest reduction may be required in 3 to 5 years

Trap/ Rear/ Release

• Opportunity costs (can’t do other work)
• Some risk due to handling fry
• Not expected to increase abundance of spawners

Captive Brood

• $200,000 over 4 years
• Affects only 1% of wild fry, but risk genetic impacts in next gen.
• Reduces need for significant harvest reduction
No intervention

Captive Brood

Example 3: Decision Tree

- **Best**
 - Low exploitation (40%)
 - High marine survival (80%)
 - Low exploitation (40%)
 - High marine survival (80%)

- **Worst**
 - Low exploitation (40%)
 - High marine survival (80%)
 - Low exploitation (40%)
 - High marine survival (80%)

- Good marine survival (0.9%)
- Poor marine survival (0.4%)
Example 3: Decision Tree

No intervention

- Captive Brood

- Good marine survival (0.9%)
 - Low exploitation (40%)
 - 1,800 adults (wild)
 - 1,080 spawners (wild)
 - High exploitation (80%)
 - 1,800 adults (wild)
 - 360 spawners (wild)
 - Low exploitation (40%)
 - 800 adults (wild)
 - 480 spawners (wild)
 - Poor marine survival (0.4%)
 - High exploitation (80%)
 - 800 adults (wild)
 - 160 spawners (wild)
Example 3: Decision Tree

No intervention

Captive Brood

good marine survival (0.9%)

poor marine survival (0.4%)

Low exploitation (40%)

High exploitation (80%)

1,800 adults (wild)
1,080 spawners (wild)

1,800 adults (wild)
360 spawners (wild)

800 adults (wild)
480 spawners (wild)

800 adults (wild)
160 spawners (wild)
Example 3: Decision Tree

No intervention

Captive Brood

- good marine survival (0.9%)
 - Low exploitation (40%)
 - 3,281 adults (1,500 CB)
 - 2,568 spawners (58% CB)
 - High exploitation (80%)
 - 3,281 adults (1,500 CB)
 - 1,856 spawners (81% CB)
- poor marine survival (0.4%)
 - Low exploitation (40%)
 - 2,291 adults (1,500 CB)
 - 1,975 spawners (76% CB)
 - High exploitation (80%)
 - 2,291 adults (1,500 CB)
 - 1,658 spawners (90% CB)
Example 3: Decision Tree

- No intervention
- Captive Brood
 - Good marine survival (0.9%)
 - Poor marine survival (0.4%)

% contribution from Captive Brood originate from 1% of fry

- Low exploitation (40%)
 - 3,281 adults (1,500 CB)
 - 2,568 spawners (58% CB)
 - 3,281 adults (1,500 CB)
 - 1,856 spawners (81% CB)
 - 2,291 adults (1,500 CB)
 - 1,975 spawners (76% CB)
 - 2,291 adults (1,500 CB)
 - 1,658 spawners (90% CB)

- High exploitation (80%)
 - Low exploitation (40%)
 - High exploitation (80%)
Example 3: Decision Tree

No intervention

Captive Brood

Cost = $0

Cost = $200,000
Over 4 years
Example 2: Fraser Sockeye Harvest Rule Simulations
Background

• Long-running process & model to forward simulate alternative harvest strategies

• Many options to test:
 • Different types of harvest strategy
 • Different specifics for each type of strategy

• Many alternative assumptions to test:
 • Population dynamics (19 stocks)
 • Harvest dynamics

• Many random trajectories into the future

=> Each variation is a branch on the decision tree

=> Many, many, many branches on that tree
Where Does It Fit?

Components of risk:
- Probability only
- Probability and Severity

Assessment Approach:
- Qual
- Quant

Lecture
Sales Pitch
Decision Support
Communication Challenge

How to show the difference in expected future patterns for many individual parts and groupings?

- Choice of key variables:
 - 19 stocks, 11 fishery groups
 - Spawners, run size, catch

- Choice of performance measures:
 - Avg vs range vs. variability
 - Time window (3 Gen Avg? Annual Pattern?)

- Choice of scenarios to compare:
 - Different strategies
 - Different assumptions
Lessons Learned (The Hard Way)

• Process vs. Information -> iterative!
• Analysts and Participants learning from each other
 -> Talk by Ann-Marie Huang
• Different plots for different phases of the process
• For a single meeting, try to pick 1 type of plot and stick with it!
• Less is more?
 -> Depends (Decision Support vs. Sales Pitch)
First Hurdle: Summarizing trajectories

Stock A

Prob(Low Spn) 3 Gen

Avg 3 Gen
Avg All Yrs
Low Spn
~ “Severity”
Illustration 1

- changing **1 setting**, show effect on **1 metric**

![Graphs for Stock A, Stock B, Stock C, Stock D showing the effect of changing a setting on a metric.](image)
Illustration 2

• Compare **9 variations** of harvest strategy
• Show effect on **2 metrics**

Stock A – Cycle Line 1 – 3 Gen

![Graph with points and lines indicating variations and metrics](image)
Conclusions

• There is no single magic plot!
• Process, process, process
• As analysts:
 • Need to find a balance between the 3 types of presentations (sometimes in the same workshop)
 • Listen to process participants and learn from their frustrations
• As participants:
 • Be patient, and please play along if the analysts are trying to get creative (Marbles!).
 • Provide sound constructive criticism on the process and the communication.
Appendix: Extra Slides
Implicit Assumptions

Probability only => assume equal consequences

• “risk of extinction”
• works well for similar cases (different harvest strategies)
• serious pitfalls when comparing diverse cases (species at risk)
Implicit Assumptions

Probability and Severity => assume equal quality of information for both

- Typically not true
- Difficult questions of scope (i.e. which consequences) and distribution (i.e. who suffers the consequences) and trade-offs
- Estimates of severity can differ by many orders of magnitude
- Methods for estimating probability more established, and more defensible in public debate

Quantitative => assume sufficient information & resources

- Holds true only for large-scale/high-priority issues (Columbia River salmon recovery plans)
- Not feasible for majority of day-to-day operational decisions
Text Book Example: 2 Possible Outcomes

Risk = Sum (Probability * Severity)

= (70% * $0) + (30% * $100) = $60 ± ?

Probability

100%

50%

0%

No Change

Bad Outcome

Severity
Typical: Range of Outcomes

Risk = \int f(\mu, \sigma) = \text{function of peak and spread}