Theory & Practice Of Risk Communication

Gottfried Pestal (SOLV Consulting Ltd.)

BC-WA Chapter of AFS Kelowna, 21 March 2018

Outline

- Introduce 2 conceptual maps
 - Types of risk assessment
 - Types of presentation
- Go through 2 examples and link them back to the concepts maps
 - loss of hatchery brood in a conservation program
 - Fraser Sockeye harvest rule simulations

Concept Map 1: Types of Risk Assessment

Components of Risk: 4 Big Questions

How sure are we?

(Uncertainty in estimates of probability and severity)

MAP 1: TYPES OF RISK ASSESSMENT

In Theory: Quantify all the components

In Practice – Published Research

Risk assessments published in *ICES Journal of Marine Science* and *Canadian Journal of Fisheries and Aquatic Sciences* from release of the PA2F (1995) until 2007.

In Practice – Operational Decisions

Concept Map 2: Types of Presentation **Types of Presentations**

Lecture Convey a body of knowledge

Sales Pitch

Trigger a course of action in the audience

Decision Support Neutral packaging

of information

Types of Presentations

Lecture Audience obligation to grasp material

Sales Pitch

Filter content based on anticipated audience reaction

Decision Support

Introduce decision - support tools, point out key results and major sources of uncertainty

Types of Presentations

Lecture

1 day seminar on restoration techniques for salmon habitat

Sales Pitch

5 min pitch to solicit funding for a specific salmon habitat restoration project

Decision Support

30 min intro to an interactive tool for prioritizing habitat restoration projects in a watershed Example 1: Loss of Hatchery Brood in a Conservation Program

Background

- Community-operated hatchery program as key part of a recovery effort, coordinated by a multistakeholder round table
- Power failure in February resulted in total loss of hatchery juveniles
- Short time window to decide whether to trap wild fry and either:
 - Rear and release larger juveniles
 - Rear as a captive brood until adult stage
- \Rightarrow Tech team wanted to communicate the pro/con for each option.
- \Rightarrow Only project in 15yrs that neatly fit the textbook decision tree (3 options, 4 outcomes each) ¹⁴

Where Does It Fit? Components of risk Probability only Probability and Severity

Assessment Approach

Qual

Example 2: Fraser Sockeye Harvest Rule Simulations

Background

- Long-running process & model to forward simulate alternative harvest strategies
- Many options to test:
 - Different types of harvest strategy
 - Different specifics for each type of strategy
- Many alternative assumptions to test:
 - Population dynamics (19 stocks)
 - Harvest dynamics
- Many random trajectories into the future
- => Each variation is a branch on the decision tree
- => Many, many, many branches on that tree

Where Does It Fit? Components of risk Probability only Severity

Assessment Approach

Qual

Communication Challenge

How to show the <u>difference in expected future</u> <u>patterns</u> for many individual parts and groupings?

- Choice of key variables:
 - 19 stocks, 11 fishery groups
 - Spawners, run size, catch
- Choice of performance measures:
 - Avg vs range vs. variability
 - Time window (3 Gen Avg? Annual Pattern?)
- Choice of scenarios to compare:
 - Different strategies
 - Different assumptions

Lessons Learned (The Hard Way)

- Process vs. Information -> iterative!
- Analysts and Participants learning from each other
 -> Talk by Ann-Marie Huang
- Different plots for different phases of the process
- For a single meeting, try to pick 1 type of plot and stick with it!
- Less is more?

-> Depends (Decision Support vs. Sales Pitch)

First Hurdle: Summarizing trajectories

Stock A

Sim Year

Illustration 1

• changing **1 setting**, show effect on **1 metric**

0.2

0.4

0.6

0.8

Illustration 2

- Compare 9 variations of harvest strategy
- Show effect on 2 metrics

Stock A – Cycle Line 1 – 3 Gen

Conclusions

- There is no single magic plot!
- Process, process, process
- As analysts:
 - Need to find a balance between the 3 types of presentations (sometimes in the same workshop)
 - Listen to process participants and learn from their frustrations
- As participants:
 - Be patient, and please play along if the analysts are trying to get creative (Marbles!).
 - Provide sound constructive criticism on the process and the communication.

Appendix: Extra Slides

Implicit Assumptions

Probability only => assume equal consequences

- "risk of extinction"
- works well for similar cases (different harvest strategies)
- serious pitfalls when comparing diverse cases (species at risk)

Implicit Assumptions

Probability and Severity => assume equal quality of information for both

- Typically not true
- Difficult questions of scope (i.e. which consequences) and distribution (i.e. who suffers the consequences) and trade-offs
- Estimates of severity can differ by many orders of magnitude
- Methods for estimating probability more established, and more defensible in public debate

Quantitative => assume sufficient information & resources

- Holds true only for large-scale/high-priority issues (Columbia River salmon recovery plans)
- Not feasible for majority of day-to-day operational decisions

Text Book Example: 2 Possible Outcomes

Risk = Sum (Probability * Severity) = $(70\% * \$0) + (30\% * \$100) = \$60 \pm ?$

Typical: Range of Outcomes

Risk = $\int f(\mu, \sigma)$ = function of peak and spread

