PASSAGE PILOT FOR SOCKEYE REINTRODUCTION AT CLE ELUM
USING THE WHOOSHH FISH TRANSPORT SYSTEM
Reservoir Fish Passage

Provide fish passage at:
1. Clear Lake
2. Cle Elum
3. Bumping
4. Tieton (Rimrock)
5. Keechelus
6. Kachess
Cle Elum Dam - 1,100’ X 165’
Cle Elum and Reintroduction

- Cle Elum Dam
 - USBR irrigation dam
 - Blockage to anadromous fish since early 1900s
- Yakama Nations reintroduction program
 - 5 species planned, sockeye first
 - Lake seeded with adults for several years
 - New “helix” for downstream
 - Ladder estimate $50M+
 - New sorting/handling facility planned
 - At dam rap and transport planned
Goals for Whooshh Passage Study

Can we get fish safely over a dam this size?
- Distance
- Height/grade
- Survival

Can we get fish to volitionally pass Cle Elum? Will Whooshh technology scale to this size challenge?
SITE CHALLENGES

1. Technical
 • Two roads
 • Height and length
 ✓ 1100' furthest accomplished before this test
 ✓ ~100' highest to date
 • Grade
 ✓ Low overall
 ✓ 35% at steepest point near road crossing
 • Forebay fluctuation
 ✓ 70' drop during test period
 • Tailrace variability
 ✓ 5-10' rise during test period
SITE CHALLENGES

2. Biological

• Available population
 ✓ No ESA listed so no NMFS delay
 ✓ Low return numbers from program
 No prior in-river fish (all trapped and trucked from Rosa)
 ✓ Introduced fish Wenatchee or Okanagan origin

• Temperature
 ✓ Ambient temperature 45-95 degrees

• Attraction flows
 ✓ Limited site placement choices given timing and temporary nature
Key components
- Steep pass for returning fish
- Flume/pipe for trucked fish
- Observation/holding tank
- False Weir
- Autonomous scanner
- Sorter
- Accelerator
- Bypass tank
TUBE ROUTING AND LENGTH

Total length 1700’
Rise 175’
35% maximum angle
Routing
 • Under road 1 (existing bridge over spillway)
 • Over road 2 (dam crest road)
Cooling jacket
Continuous misting
TUBE ROUTING

Under......

....over
EXIT CONFIGURATION

Floating platform
 • Accommodate forebay fluctuation
 • Anchor/winches

Deflector
 • Angle fish for ideal lake entry after tube exit

Booster station before dam crest
 • Provide speed control prior to fish exit
 • Increase throughput of system
WHAT ACTUALLY HAPPENED

System setup in less than 90 days
 • Probably a first for high head dam fish passage
Worst sockeye return on Columbia for 10 years
Fish considerably smaller than 2016 Priest Rapids migration study test
Only ~100 total fish available for Whooshh
 • None of Cle Elum origin
 • All trucked from Priest Rapids
 ✓ Okanagan or Wenatchee origin
RESULTS

Caveats

- Not yet published
- Very limited sample size
- All non-native fish

Both controls and test fish “fell back” in significant numbers

- Multiple detections below the dam

“System shakedown” fish not distinguished from test fish
Initial Observations

• Needed more fish
• Yes, fish can be successfully transported this distance
• After 2-3 days of tuning, survival performance was equal for both population groups
 ✓ Bodes well for adaptive management
• Once system fully operational, no significant differences from prior tests
CONSIDERATIONS FOR PERMANENT HIGH HEAD SOLUTIONS

Entrance placement
- Consider fish behavior
- Floating option
- Flexibility to change based on results

Ancillary components – place in building

Tube routing
- Permanent enclosure for protection

Exit
- Enclose barge end/permanent shore exit to accommodate wave conditions
SAFE SURVIVAL, REPRODUCTION, INJURY, BEHAVIOR, DISEASE TRANSMISSION

TIMELY & EFFICIENT VOLITONAL SELECTIVE PASSAGE TIME ENERGY RESERVES TRAVEL TIME DISTANCE

EFFECTIVE MIGRATION HOMING DURABLE
How High Can We Go?

<table>
<thead>
<tr>
<th>Distances in feet</th>
<th>Tube length</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>86.8</td>
<td>171.0</td>
<td>250.0</td>
<td>321.4</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>173.6</td>
<td>342.0</td>
<td>500.0</td>
<td>642.8</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>260.5</td>
<td>513.0</td>
<td>750.0</td>
<td>964.2</td>
<td></td>
</tr>
<tr>
<td>1750</td>
<td>303.9</td>
<td>598.5</td>
<td>875.0</td>
<td>1124.9</td>
<td></td>
</tr>
</tbody>
</table>

- **Dworshak**: ~640' vs 717'
- **Grand Coulee**: ~400' vs 550'
- **Chief Joseph**: ~180' vs 236'

![Diagram showing tube length, tailrace to crest, and angle.]
Key Takeaways

- Capital costs typically <20%
- O&M costs <50%
- Deploy in months not years
- Transit in seconds not hours/days
 - ✓ Low energy consumption for fish

PLUS
- Scanning enables selective passage (keep invasive species out of the system)
- Low water usage -> increased power/irrigation options
Autonomous, Volitional, Selective, Adult Fish Passage
Questions?

That Was Awesome!

Can we go again?

I Feel Good